Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Nat Commun ; 14(1): 3244, 2023 06 05.
Article in English | MEDLINE | ID: covidwho-20239143

ABSTRACT

Variations of cell-type proportions within tissues could be informative of biological aging and disease risk. Single-cell RNA-sequencing offers the opportunity to detect such differential abundance patterns, yet this task can be statistically challenging due to the noise in single-cell data, inter-sample variability and because such patterns are often of small effect size. Here we present a differential abundance testing paradigm called ELVAR that uses cell attribute aware clustering when inferring differentially enriched communities within the single-cell manifold. Using simulated and real single-cell and single-nucleus RNA-Seq datasets, we benchmark ELVAR against an analogous algorithm that uses Louvain for clustering, as well as local neighborhood-based methods, demonstrating that ELVAR improves the sensitivity to detect cell-type composition shifts in relation to aging, precancerous states and Covid-19 phenotypes. In effect, leveraging cell attribute information when inferring cell communities can denoise single-cell data, avoid the need for batch correction and help retrieve more robust cell states for subsequent differential abundance testing. ELVAR is available as an open-source R-package.


Subject(s)
COVID-19 , Single-Cell Gene Expression Analysis , Humans , Single-Cell Analysis/methods , RNA-Seq/methods , Algorithms , Cluster Analysis , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
2.
Int J Biol Sci ; 19(7): 2167-2197, 2023.
Article in English | MEDLINE | ID: covidwho-2314174

ABSTRACT

So far there has been no comprehensive review using systematic literature search strategies to show the application of single-cell RNA sequencing (scRNA-seq) in the human testis of the whole life cycle (from embryos to aging males). Here, we summarized the application of scRNA-seq analyses on various human testicular biological samples. A systematic search was conducted in PubMed and Gene Expression Omnibus (GEO), focusing on English researches published after 2009. Articles related to GEO data-series were also retrieved in PubMed or BioRxiv. 81 full-length studies were finally included in the review. ScRNA-seq has been widely used on different human testicular samples with various library strategies, and new cell subtypes such as State 0 spermatogonial stem cells (SSC) and stage_a/b/c Sertoli cells (SC) were identified. For the development of normal testes, scRNA-seq-based evidence showed dynamic transcriptional changes of both germ cells and somatic cells from embryos to adults. And dysregulated metabolic signaling or hedgehog signaling were revealed by scRNA-seq in aged SC or Leydig cells (LC), respectively. For infertile males, scRNA-seq studies revealed profound changes of testes, such as the increased proportion of immature SC/LC of Klinefelter syndrome, the somatic immaturity and altered germline autophagy of patients with non-obstructive azoospermia, and the repressed differentiation of SSC in trans-females receiving testosterone inhibition therapy. Besides, the re-analyzing of public scRNA-seq data made further discoveries such as the potential vulnerability of testicular SARS-CoV-2 infection, and both evolutionary conservatism and divergence among species. ScRNA-seq analyses would unveil mechanisms of testes' development and changes so as to help developing novel treatments for male infertility.


Subject(s)
COVID-19 , Infertility, Male , Adult , Humans , Male , Aged , Testis/metabolism , Spermatogenesis/genetics , COVID-19/metabolism , Hedgehog Proteins/metabolism , SARS-CoV-2/genetics , Infertility, Male/metabolism , Sequence Analysis, RNA
3.
Nat Commun ; 14(1): 2484, 2023 04 29.
Article in English | MEDLINE | ID: covidwho-2302122

ABSTRACT

Tissues are highly complicated with spatial heterogeneity in gene expression. However, the cutting-edge single-cell RNA-seq technology eliminates the spatial information of individual cells, which contributes to the characterization of cell identities. Herein, we propose single-cell spatial position associated co-embeddings (scSpace), an integrative method to identify spatially variable cell subpopulations by reconstructing cells onto a pseudo-space with spatial transcriptome references (Visium, STARmap, Slide-seq, etc.). We benchmark scSpace with both simulated and biological datasets, and demonstrate that scSpace can accurately and robustly identify spatially variated cell subpopulations. When employed to reconstruct the spatial architectures of complex tissue such as the brain cortex, the small intestinal villus, the liver lobule, the kidney, the embryonic heart, and others, scSpace shows promising performance on revealing the pairwise cellular spatial association within single-cell data. The application of scSpace in melanoma and COVID-19 exhibits a broad prospect in the discovery of spatial therapeutic markers.


Subject(s)
COVID-19 , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Transcriptome , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
4.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: covidwho-2292897

ABSTRACT

The advances of single-cell transcriptomic technologies have led to increasing use of single-cell RNA sequencing (scRNA-seq) data in large-scale patient cohort studies. The resulting high-dimensional data can be summarized and incorporated into patient outcome prediction models in several ways; however, there is a pressing need to understand the impact of analytical decisions on such model quality. In this study, we evaluate the impact of analytical choices on model choices, ensemble learning strategies and integrate approaches on patient outcome prediction using five scRNA-seq COVID-19 datasets. First, we examine the difference in performance between using single-view feature space versus multi-view feature space. Next, we survey multiple learning platforms from classical machine learning to modern deep learning methods. Lastly, we compare different integration approaches when combining datasets is necessary. Through benchmarking such analytical combinations, our study highlights the power of ensemble learning, consistency among different learning methods and robustness to dataset normalization when using multiple datasets as the model input.


Subject(s)
Benchmarking , COVID-19 , Humans , Gene Expression Profiling , Machine Learning , Sequence Analysis, RNA/methods
5.
Science ; 379(6638): 1175-1176, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2255390
6.
Emerg Microbes Infect ; 12(1): e2187245, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2284307

ABSTRACT

Over 3 billion doses of inactivated vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been administered globally. However, our understanding of the immune cell functional transcription and T cell receptor (TCR)/B cell receptor (BCR) repertoire dynamics following inactivated SARS-CoV-2 vaccination remains poorly understood. Here, we performed single-cell RNA and TCR/BCR sequencing on peripheral blood mononuclear cells at four time points after immunization with the inactivated SARS-CoV-2 vaccine BBIBP-CorV. Our analysis revealed an enrichment of monocytes, central memory CD4+ T cells, type 2 helper T cells and memory B cells following vaccination. Single-cell TCR-seq and RNA-seq comminating analysis identified a clonal expansion of CD4+ T cells (but not CD8+ T cells) following a booster vaccination that corresponded to a decrease in the TCR diversity of central memory CD4+ T cells and type 2 helper T cells. Importantly, these TCR repertoire changes and CD4+ T cell differentiation were correlated with the biased VJ gene usage of BCR and the antibody-producing function of B cells post-vaccination. Finally, we compared the functional transcription and repertoire dynamics in immune cells elicited by vaccination and SARS-CoV-2 infection to explore the immune responses under different stimuli. Our data provide novel molecular and cellular evidence for the CD4+ T cell-dependent antibody response induced by inactivated vaccine BBIBP-CorV. This information is urgently needed to develop new prevention and control strategies for SARS-CoV-2 infection. (ClinicalTrials.gov Identifier: NCT04871932).


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Leukocytes, Mononuclear , SARS-CoV-2 , Receptors, Antigen, B-Cell , Immunization, Secondary , Sequence Analysis, RNA , Antibodies, Viral
7.
Genomics Proteomics Bioinformatics ; 20(5): 814-835, 2022 10.
Article in English | MEDLINE | ID: covidwho-2252969

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously. Analysis of scRNA-seq data plays an important role in the study of cell states and phenotypes, and has helped elucidate biological processes, such as those occurring during the development of complex organisms, and improved our understanding of disease states, such as cancer, diabetes, and coronavirus disease 2019 (COVID-19). Deep learning, a recent advance of artificial intelligence that has been used to address many problems involving large datasets, has also emerged as a promising tool for scRNA-seq data analysis, as it has a capacity to extract informative and compact features from noisy, heterogeneous, and high-dimensional scRNA-seq data to improve downstream analysis. The present review aims at surveying recently developed deep learning techniques in scRNA-seq data analysis, identifying key steps within the scRNA-seq data analysis pipeline that have been advanced by deep learning, and explaining the benefits of deep learning over more conventional analytic tools. Finally, we summarize the challenges in current deep learning approaches faced within scRNA-seq data and discuss potential directions for improvements in deep learning algorithms for scRNA-seq data analysis.


Subject(s)
COVID-19 , Deep Learning , Humans , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Artificial Intelligence , Single-Cell Analysis/methods , Cluster Analysis
8.
Sci Rep ; 13(1): 4154, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2249038

ABSTRACT

The rapid spread of the COVID-19 pandemic has resulted in an unprecedented amount of sequence data of the SARS-CoV-2 genome-millions of sequences and counting. This amount of data, while being orders of magnitude beyond the capacity of traditional approaches to understanding the diversity, dynamics, and evolution of viruses, is nonetheless a rich resource for machine learning (ML) approaches as alternatives for extracting such important information from these data. It is of hence utmost importance to design a framework for testing and benchmarking the robustness of these ML models. This paper makes the first effort (to our knowledge) to benchmark the robustness of ML models by simulating biological sequences with errors. In this paper, we introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio. We show from experiments on a wide array of ML models that some simulation-based approaches with different perturbation budgets are more robust (and accurate) than others for specific embedding methods to certain noise simulations on the input sequences. Our benchmarking framework may assist researchers in properly assessing different ML models and help them understand the behavior of the SARS-CoV-2 virus or avoid possible future pandemics.


Subject(s)
Computer Simulation , Genome, Viral , Machine Learning , Research Design , SARS-CoV-2 , Machine Learning/standards , SARS-CoV-2/classification , SARS-CoV-2/genetics , Genome, Viral/genetics , Viral Proteins/genetics , COVID-19/virology , Sequence Analysis, RNA
9.
Nucleic Acids Res ; 50(D1): D817-D827, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-2236145

ABSTRACT

Virus infections are huge threats to living organisms and cause many diseases, such as COVID-19 caused by SARS-CoV-2, which has led to millions of deaths. To develop effective strategies to control viral infection, we need to understand its molecular events in host cells. Virus related functional genomic datasets are growing rapidly, however, an integrative platform for systematically investigating host responses to viruses is missing. Here, we developed a user-friendly multi-omics portal of viral infection named as MVIP (https://mvip.whu.edu.cn/). We manually collected available high-throughput sequencing data under viral infection, and unified their detailed metadata including virus, host species, infection time, assay, and target, etc. We processed multi-layered omics data of more than 4900 viral infected samples from 77 viruses and 33 host species with standard pipelines, including RNA-seq, ChIP-seq, and CLIP-seq, etc. In addition, we integrated these genome-wide signals into customized genome browsers, and developed multiple dynamic charts to exhibit the information, such as time-course dynamic and differential gene expression profiles, alternative splicing changes and enriched GO/KEGG terms. Furthermore, we implemented several tools for efficiently mining the virus-host interactions by virus, host and genes. MVIP would help users to retrieve large-scale functional information and promote the understanding of virus-host interactions.


Subject(s)
Databases, Factual , Host Microbial Interactions , Virus Diseases , Animals , Chromatin Immunoprecipitation Sequencing , Gene Ontology , Genome, Viral , High-Throughput Nucleotide Sequencing , Host Microbial Interactions/genetics , Humans , Metadata , Sequence Analysis, RNA , Software , Transcriptome , User-Computer Interface , Virus Diseases/genetics , Virus Diseases/metabolism , Web Browser
10.
Nat Commun ; 14(1): 223, 2023 01 14.
Article in English | MEDLINE | ID: covidwho-2185846

ABSTRACT

Consistent annotation transfer from reference dataset to query dataset is fundamental to the development and reproducibility of single-cell research. Compared with traditional annotation methods, deep learning based methods are faster and more automated. A series of useful single cell analysis tools based on autoencoder architecture have been developed but these struggle to strike a balance between depth and interpretability. Here, we present TOSICA, a multi-head self-attention deep learning model based on Transformer that enables interpretable cell type annotation using biologically understandable entities, such as pathways or regulons. We show that TOSICA achieves fast and accurate one-stop annotation and batch-insensitive integration while providing biologically interpretable insights for understanding cellular behavior during development and disease progressions. We demonstrate TOSICA's advantages by applying it to scRNA-seq data of tumor-infiltrating immune cells, and CD14+ monocytes in COVID-19 to reveal rare cell types, heterogeneity and dynamic trajectories associated with disease progression and severity.


Subject(s)
COVID-19 , Humans , Reproducibility of Results , Single-Cell Analysis/methods , Disease Progression , Exome Sequencing , Sequence Analysis, RNA/methods
11.
J Immunol ; 210(3): 271-282, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2201457

ABSTRACT

Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Transcriptome , Intestine, Small/pathology , Intestines/pathology , Sequence Analysis, RNA
12.
Virol J ; 19(1): 217, 2022 12 15.
Article in English | MEDLINE | ID: covidwho-2162390

ABSTRACT

The application of single-cell RNA sequencing in COVID-19 research has greatly improved our understanding of COVID-19 pathogenesis and immunological characteristics. In this commentary, we discuss the current challenges, limitations, and perspectives in harnessing the power of single-cell RNA sequencing to accelerate both basic research and therapeutic development for COVID-19 and other emerging infectious diseases.


Subject(s)
COVID-19 , Humans , Single-Cell Analysis , Single-Cell Gene Expression Analysis , Sequence Analysis, RNA
13.
Sci Rep ; 12(1): 20167, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2133629

ABSTRACT

To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in Framingham Heart Study. We identified 6,778,286 cis-eQTL variant-gene transcript (eGene) pairs at p < 5 × 10-8 (2,855,111 unique cis-eQTL variants and 15,982 unique eGenes) and 1,469,754 trans-eQTL variant-eGene pairs at p < 1e-12 (526,056 unique trans-eQTL variants and 7233 unique eGenes). In addition, 442,379 cis-eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the top GO terms for cis-eGenes are enriched for immune functions (FDR < 0.05). The cis-eQTL variants are enriched for SNPs reported to be associated with 815 traits in prior GWAS, including cardiovascular disease risk factors. As proof of concept, we used this eQTL resource in conjunction with genetic variants from public GWAS databases in causal inference testing (e.g., COVID-19 severity). After Bonferroni correction, Mendelian randomization analyses identified putative causal associations of 60 eGenes with systolic blood pressure, 13 genes with coronary artery disease, and seven genes with COVID-19 severity. This study created a comprehensive eQTL resource via BioData Catalyst that will be made available to the scientific community. This will advance understanding of the genetic architecture of gene expression underlying a wide range of diseases.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Quantitative Trait Loci , Humans , DNA , Gene Expression , Quantitative Trait Loci/genetics , Sequence Analysis, RNA
14.
J Vis Exp ; (188)2022 10 21.
Article in English | MEDLINE | ID: covidwho-2110320

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNAs that are formed via back-splicing. These circRNAs are predominantly studied for their roles as regulators of various biological processes. Notably, emerging evidence demonstrates that host circRNAs can be differentially expressed (DE) upon infection with pathogens (e.g., influenza and coronaviruses), suggesting a role for circRNAs in regulating host innate immune responses. However, investigations on the role of circRNAs during pathogenic infections are limited by the knowledge and skills required to carry out the necessary bioinformatic analysis to identify DE circRNAs from RNA sequencing (RNA-seq) data. Bioinformatics prediction and identification of circRNAs is crucial before any verification, and functional studies using costly and time-consuming wet-lab techniques. To solve this issue, a step-by-step protocol of in silico prediction and characterization of circRNAs using RNA-seq data is provided in this manuscript. The protocol can be divided into four steps: 1) Prediction and quantification of DE circRNAs via the CIRIquant pipeline; 2) Annotation via circBase and characterization of DE circRNAs; 3) CircRNA-miRNA interaction prediction through Circr pipeline; 4) functional enrichment analysis of circRNA parental genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). This pipeline will be useful in driving future in vitro and in vivo research to further unravel the role of circRNAs in host-pathogen interactions.


Subject(s)
MicroRNAs , RNA, Circular , RNA, Circular/genetics , Sequence Analysis, RNA , MicroRNAs/genetics , Computational Biology/methods , Host-Pathogen Interactions/genetics , Gene Expression Profiling/methods
15.
IEEE Trans Biomed Eng ; 69(8): 2557-2568, 2022 08.
Article in English | MEDLINE | ID: covidwho-2107854

ABSTRACT

OBJECTIVE: The m6A modification is the most common ribonucleic acid (RNA) modification, playing a role in prompting the virus's gene mutation and protein structure changes in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Nanopore single-molecule direct RNA sequencing (DRS) provides data support for RNA modification detection, which can preserve the potential m6A signature compared to second-generation sequencing. However, due to insufficient DRS data, there is a lack of methods to find m6A RNA modifications in DRS. Our purpose is to identify m6A modifications in DRS precisely. METHODS: We present a methodology for identifying m6A modifications that incorporated mapping and extracted features from DRS data. To detect m6A modifications, we introduce an ensemble method called mixed-weight neural bagging (MWNB), trained with 5-base RNA synthetic DRS containing modified and unmodified m6A. RESULTS: Our MWNB model achieved the highest classification accuracy of 97.85% and AUC of 0.9968. Additionally, we applied the MWNB model to the COVID-19 dataset; the experiment results reveal a strong association with biomedical experiments. CONCLUSION: Our strategy enables the prediction of m6A modifications using DRS data and completes the identification of m6A modifications on the SARS-CoV-2. SIGNIFICANCE: The Corona Virus Disease 2019 (COVID-19) outbreak has significantly influence, caused by the SARS-CoV-2. An RNA modification called m6A is connected with viral infections. The appearance of m6A modifications related to several essential proteins affects proteins' structure and function. Therefore, finding the location and number of m6A RNA modifications is crucial for subsequent analysis of the protein expression profile.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sequence Analysis, RNA
16.
Brief Funct Genomics ; 21(6): 423-432, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2087742

ABSTRACT

The elevated levels of inflammatory cytokines have attracted much attention during the treatment of COVID-19 patients. The conclusions of current observational studies are often controversial in terms of the causal effects of COVID-19 on various cytokines because of the confounding factors involving underlying diseases. To resolve this problem, we conducted a Mendelian randomization analysis by integrating the GWAS data of COVID-19 and 41 cytokines. As a result, the levels of 2 cytokines were identified to be promoted by COVID-19 and had unsignificant pleiotropy. In comparison, the levels of 10 cytokines were found to be inhibited and had unsignificant pleiotropy. Among down-regulated cytokines, CCL2, CCL3 and CCL7 were members of CC chemokine family. We then explored the potential molecular mechanism for a significant causal association at a single cell resolution based on single-cell RNA data, and discovered the suppression of CCL3 and the inhibition of CCL3-CCR1 interaction in classical monocytes (CMs) of COVID-19 patients. Our findings may indicate that the capability of COVID-19 in decreasing the chemotaxis of lymphocytes by inhibiting the CCL3-CCR1 interaction in CMs.


Subject(s)
COVID-19 , Cytokines , Humans , Mendelian Randomization Analysis , COVID-19/genetics , Sequence Analysis, RNA , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics
17.
Nat Commun ; 13(1): 6118, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2077050

ABSTRACT

Computational tools for integrative analyses of diverse single-cell experiments are facing formidable new challenges including dramatic increases in data scale, sample heterogeneity, and the need to informatively cross-reference new data with foundational datasets. Here, we present SCALEX, a deep-learning method that integrates single-cell data by projecting cells into a batch-invariant, common cell-embedding space in a truly online manner (i.e., without retraining the model). SCALEX substantially outperforms online iNMF and other state-of-the-art non-online integration methods on benchmark single-cell datasets of diverse modalities, (e.g., single-cell RNA sequencing, scRNA-seq, single-cell assay for transposase-accessible chromatin use sequencing, scATAC-seq), especially for datasets with partial overlaps, accurately aligning similar cell populations while retaining true biological differences. We showcase SCALEX's advantages by constructing continuously expandable single-cell atlases for human, mouse, and COVID-19 patients, each assembled from diverse data sources and growing with every new data. The online data integration capacity and superior performance makes SCALEX particularly appropriate for large-scale single-cell applications to build upon previous scientific insights.


Subject(s)
COVID-19 , Single-Cell Analysis , Animals , Humans , Mice , Chromatin , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transposases
18.
Front Immunol ; 13: 920865, 2022.
Article in English | MEDLINE | ID: covidwho-2071086

ABSTRACT

Objectives: To investigate the differences between the vector vaccine ChAdOx1 nCoV-19/AZD1222 (Oxford-AstraZeneca) and mRNA-based vaccine mRNA-1273 (Moderna) in patients with autoimmune rheumatic diseases (AIRD), and to explore the cell-cell interactions between high and low anti-SARS-CoV-2 IgG levels in patients with rheumatic arthritis (RA) using single-cell RNA sequencing (scRNA-seq). Methods: From September 16 to December 10, 2021, we consecutively enrolled 445 participants (389 patients with AIRD and 56 healthy controls), of whom 236 were immunized with AZD1222 and 209 with mRNA-1273. The serum IgG antibodies to the SARS-CoV-2 receptor-binding domain was quantified by electrochemiluminescence immunoassay at 4-6 weeks after vaccination. Moreover, peripheral blood mononuclear cells (PBMCs) were isolated from RA patients at 4-6 weeks after vaccination for scRNA-seq and further analyzed by CellChat. ScRNA-seq of PBMCs samples from GSE201534 in the Gene Expression Omnibus (GEO) database were also extracted for analysis. Results: The anti-SARS-CoV-2 IgG seropositivity rate was 85.34% for AIRD patients and 98.20% for healthy controls. The anti-SARS-CoV-2 IgG level was higher in patients receiving mRNA-1273 than those receiving AZD1222 (ß: 35.25, 95% CI: 14.81-55.68, p=0.001). Prednisolone-equivalent dose >5 mg/day and methotrexate use in AIRD patients, and non-anti-tumor necrosis factor-α biologics and Janus kinase inhibitor use in RA patients were associated with inferior immunogenicity. ScRNA-seq revealed CD16-monocytes were predominant in RA patients with high anti-SARS-CoV2-IgG antibodies, and enriched pathways related to antigen presentation via MHC class II were found. HLA-DRA and CD4 interaction was enhanced in high anti-SARS-CoV2-IgG group. Conclusions: mRNA-1273 and AZD1222 vaccines exhibited differential immunogenicity in AIRD patients. Enriched pathways related to antigen presentation via MHC class II in CD16-monocytes might be associated with higher anti-SARS-CoV2-IgG level in RA patients and further study is warranted.


Subject(s)
Autoimmune Diseases , COVID-19 , Rheumatic Diseases , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunoglobulin G , Leukocytes, Mononuclear , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Sequence Analysis, RNA , mRNA Vaccines
19.
Front Immunol ; 13: 967356, 2022.
Article in English | MEDLINE | ID: covidwho-2065510

ABSTRACT

Alzheimer's disease (AD)-like cognitive impairment, a kind of Neuro-COVID syndrome, is a reported complication of SARS-CoV-2 infection. However, the specific mechanisms remain largely unknown. Here, we integrated single-nucleus RNA-sequencing data to explore the potential shared genes and pathways that may lead to cognitive dysfunction in AD and COVID-19. We also constructed ingenuity AD-high-risk scores based on AD-high-risk genes from transcriptomic, proteomic, and Genome-Wide Association Studies (GWAS) data to identify disease-associated cell subtypes and potential targets in COVID-19 patients. We demonstrated that the primary disturbed cell populations were astrocytes and neurons between the above two dis-eases that exhibit cognitive impairment. We identified significant relationships between COVID-19 and AD involving synaptic dysfunction, neuronal damage, and neuroinflammation. Our findings may provide new insight for future studies to identify novel targets for preventive and therapeutic interventions in COVID-19 patients.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , COVID-19/complications , COVID-19/genetics , Cognitive Dysfunction/genetics , Genome-Wide Association Study , Humans , Proteomics , RNA , SARS-CoV-2 , Sequence Analysis, RNA
20.
Science ; 378(6615): 17-21, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2053099

ABSTRACT

With rigorous science and good-humored braggadocio, Tulio de Oliveira champions coronavirus research from the Global South.


Subject(s)
COVID-19 , Computational Biology , SARS-CoV-2 , Sequence Analysis, RNA , Brazil , COVID-19/history , COVID-19/virology , Computational Biology/history , History, 21st Century , Humans , SARS-CoV-2/genetics , Sequence Analysis, RNA/history , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL